Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Viruses ; 15(2)2023 02 19.
Article in English | MEDLINE | ID: covidwho-2240132

ABSTRACT

COVID-19 is associated with a dysregulated immune response. Currently, several medicines are licensed for the treatment of this disease. Due to their significant role in inhibiting pro-inflammatory cytokines and lipid mediators, glucocorticoids (GCs) have attracted a great deal of attention. Similarly, the endocannabinoid (eCB) system regulates various physiological processes including the immunological response. Additionally, during inflammatory and thrombotic processes, phospholipids from cell membranes are cleaved to produce platelet-activating factor (PAF), another lipid mediator. Nonetheless, the effect of GCs on this lipid pathway during COVID-19 therapy is still unknown. This is a cross-sectional study involving COVID-19 patients (n = 200) and healthy controls (n = 35). Target tandem mass spectrometry of plasma lipid mediators demonstrated that COVID-19 severity affected eCBs and PAF synthesis. This increased synthesis of eCB was adversely linked with systemic inflammatory markers IL-6 and sTREM-1 levels and neutrophil counts. The use of GCs altered these lipid pathways by reducing PAF and increasing 2-AG production. Corroborating this, transcriptome analysis of GC-treated patients blood leukocytes showed differential modulation of monoacylglycerol lipase and phospholipase A2 gene expression. Altogether, these findings offer a breakthrough in our understanding of COVID-19 pathophysiology, indicating that GCs may promote additional protective pharmacological effects by influencing the eCB and PAF pathways involved in the disease course.


Subject(s)
COVID-19 , Platelet Activating Factor , Humans , Cross-Sectional Studies , Endocannabinoids , Glucocorticoids/therapeutic use
2.
Drugs Context ; 112022.
Article in English | MEDLINE | ID: covidwho-2145053

ABSTRACT

Anxiety-related disorders are one of the most common mental health issues worldwide. Mexico has reported an increase in the prevalence of these ailments secondary to the confinement derived from the COVID-19 pandemic. Given the limitations of commonly used treatments for these disorders, a need arises to develop new pharmacological treatments for these patients. This paper has the primary objective of evaluating the efficacy and safety of cannabidiol isolate in drug compounding used as a personalized treatment in patients with anxiety disorders through the presentation of four clinical cases.

3.
Front Immunol ; 13: 841459, 2022.
Article in English | MEDLINE | ID: covidwho-1731786

ABSTRACT

In late 2019, COVID-19 emerged in Wuhan, China. Currently, it is an ongoing global health threat stressing the need for therapeutic compounds. Linking the virus life cycle and its interaction with cell receptors and internal cellular machinery is key to developing therapies based on the control of infectivity and inflammation. In this framework, we evaluate the combination of cannabidiol (CBD), as an anti-inflammatory molecule, and terpenes, by their anti-microbiological properties, in reducing SARS-CoV-2 infectivity. Our group settled six formulations combining CBD and terpenes purified from Cannabis sativa L, Origanum vulgare, and Thymus mastichina. The formulations were analyzed by HPLC and GC-MS and evaluated for virucide and antiviral potential by in vitro studies in alveolar basal epithelial, colon, kidney, and keratinocyte human cell lines. Conclusions and Impact: We demonstrate the virucide effectiveness of CBD and terpene-based formulations. F2TC reduces the infectivity by 17%, 24%, and 99% for CaCo-2, HaCat, and A549, respectively, and F1TC by 43%, 37%, and 29% for Hek293T, HaCaT, and Caco-2, respectively. To the best of our knowledge, this is the first approach that tackles the combination of CBD with a specific group of terpenes against SARS-CoV-2 in different cell lines. The differential effectiveness of formulations according to the cell line can be relevant to understanding the pattern of virus infectivity and the host inflammation response, and lead to new therapeutic strategies.


Subject(s)
Antiviral Agents/pharmacology , Cannabidiol/pharmacology , SARS-CoV-2/drug effects , Terpenes/pharmacology , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/chemistry , Cannabidiol/chemistry , Cell Line , Cell Survival/drug effects , Drug Synergism , Humans , Plants, Medicinal/chemistry , Terpenes/chemistry , Virus Internalization/drug effects , Virus Replication/drug effects
4.
Eur J Pharmacol ; 911: 174560, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1458663

ABSTRACT

The global incidence of respiratory diseases and complications is increasing. Therefore, new methods of treatment, as well as prevention, need to be investigated. A group of compounds that should be considered for use in respiratory diseases is cannabinoids. There are three groups of cannabinoids - plant-derived phytocannabinoids, synthetic cannabinoids, and endogenous endocannabinoids including the enzymes responsible for their synthesis and degradation. All cannabinoids exert their biological effects through either type 1 cannabinoid receptors (CB1) and/or type 2 cannabinoid receptors (CB2). In numerous studies (in vitro and in vivo), cannabinoids and inhibitors of endocannabinoid degradation have shown beneficial anti-inflammatory, antioxidant, anti-cancer, and anti-fibrotic properties. Although in the respiratory system, most of the studies have focused on the positive properties of cannabinoids and inhibitors of endocannabinoid degradation. There are few research reports discussing the negative impact of these compounds. This review summarizes the properties and mechanisms of action of cannabinoids and inhibitors of endocannabinoid degradation in various models of respiratory diseases. A short description of the effects selected cannabinoids have on the human respiratory system and their possible use in the fight against COVID-19 is also presented. Additionally, a brief summary is provided of cannabinoid receptors properties and their expression in the respiratory system and cells of the immune system.


Subject(s)
Cannabinoids/pharmacology , Endocannabinoids/metabolism , Respiratory Tract Diseases/drug therapy , Animals , Cannabinoids/administration & dosage , Enzyme Inhibitors/pharmacology , Humans , Models, Biological , Receptors, Cannabinoid/immunology , Receptors, Cannabinoid/metabolism , Respiratory Tract Diseases/metabolism , COVID-19 Drug Treatment
5.
Int J Mol Sci ; 22(7)2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1299439

ABSTRACT

The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review. Future directions should envision capturing its diversity and exploiting pharmacological options beyond the classical ECS suspects (exogenous cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid receptor heteromers offers new possibilities for different biochemical outcomes in the cell.


Subject(s)
Endocannabinoids/metabolism , Metabolic Networks and Pathways , Receptors, Cannabinoid/metabolism , Animals , Appetite Regulation , Carbohydrate Metabolism , Endocannabinoids/immunology , Humans , Lipid Metabolism , Neoplasms/etiology , Neoplasms/metabolism , Respiration Disorders/immunology , Respiration Disorders/metabolism
6.
J Cannabis Res ; 2(1): 23, 2020.
Article in English | MEDLINE | ID: covidwho-1059599

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is spreading fast all around the world with more than fourteen millions of detected infected cases and more than 600.000 deaths by 20th July 2020. While scientist are working to find a vaccine, current epidemiological data shows that the most common comorbidities for patients with the worst prognosis, hypertension and diabetes, are often treated with angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs). BODY: Both ACE inhibitors and ARBs induce overexpression of the angiotensin converting enzyme 2 (ACE-2) receptor, which has been identified as the main receptor used by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter into the alveolar cells of the lungs. While cannabinoids are known to reduce hypertension, the studies testing the hypotensive effects of cannabinoids never addressed their effects on ACE-2 receptors. However, some studies have linked the endocannabinoid system (ECS) with the renin angiotensin system (RAS), including a cross-modulation between the cannabinoid receptor 1 (CB1) and angiotensin II levels. CONCLUSION: Since there are around 192 million people using cannabis worldwide, we believe that the mechanism underlying the hypotensive properties of cannabinoids should be urgently studied to understand if they can also lead to ACE-2 overexpression as other antihypertensive drugs do.

7.
Future Sci OA ; 6(8): FSO625, 2020 Aug 13.
Article in English | MEDLINE | ID: covidwho-795552
8.
Med Cannabis Cannabinoids ; 3(2): 111-115, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-768108

ABSTRACT

Since the endocannabinoid system is involved in immune function, the effect of cannabinoid intake on infectious conditions is questioned for several years and is of particular interest in the COVID 19 pandemia. Some data suggest that the immunomodulatory effect of cannabinoids may affect the course and severity of SARS-CoV-2 infection. Given the large number of cannabinoids consumers in the community, this commentary presents the current knowledge on the potential impact of cannabinoids and endocannabinoids on bacterial and viral infection courses namely SARS-CoV-2 disease. Practical recommendations, which can be drawn from the literature, are given.

SELECTION OF CITATIONS
SEARCH DETAIL